通過主觀意識借助實體或者虛擬表現(xiàn)構成客觀闡述形態(tài)結構的一種表達目的的物件(物件并不等于物體,不局限于實體與虛擬、不限于平面與立體)。
模型≠商品。任何物件定義為商品之前的研發(fā)過程中形態(tài)均為模型,當定義型號、規(guī)格并匹配相應價格的時候,模型將會以商品形式呈現(xiàn)出來。
從廣義上講:如果一件事物能隨著另一件事物的改變而改變,那么此事物就是另一件事物的模型。模型的作用就是表達不同概念的性質(zhì),一個概念可以使很多模型發(fā)生不同程度的改變,但只要很少模型就能表達出一個概念的性質(zhì),所以一個概念可以通過參考不同的模型從而改變性質(zhì)的表達形式。
當模型與事物發(fā)生聯(lián)系時會產(chǎn)生一個具有性質(zhì)的框架,此性質(zhì)決定模型怎樣隨事物變化
數(shù)學模型是針對參照某種事物系統(tǒng)的特征或數(shù)量依存關系,采用數(shù)學語言,概括地或近似地表述出的一種數(shù)學結構,這種數(shù)學結構是借助于數(shù)學符號刻劃出來的某種系統(tǒng)的純關系結構。從廣義理解,數(shù)學模型包括數(shù)學中的各種概念,各種公式和各種理論。因為它們都是由現(xiàn)實世界的原型抽象出來的,從這意義上講,整個數(shù)學也可以說是一門關于數(shù)學模型的科學。從狹義理解,數(shù)學模型只指那些反映了特定問題或特定的具體事物系統(tǒng)的數(shù)學關系結構,這個意義上也可理解為聯(lián)系一個系統(tǒng)中各變量間內(nèi)的關系的數(shù)學表達。
數(shù)學模型所表達的內(nèi)容可以是定量的,也可以是定性的,但必須以定量的方式體現(xiàn)出來。因此,數(shù)學模型法的操作方式偏向于定量形式。
數(shù)學模型是運用數(shù)理邏輯方法和數(shù)學語言建構的科學或工程模型。
數(shù)學模型的歷史可以追溯到人類開始使用數(shù)字的時代。隨著人類使用數(shù)字,就不斷地建立各種數(shù)學模型,以解決各種各樣的實際問題。對于廣大的科學技術工作者對大學生的綜合素質(zhì)測評,對教師的工作業(yè)績的評定以及諸如訪友,采購等日?;顒?,都可以建立一個數(shù)學模型,確立一個方案。建立數(shù)學模型是溝通擺在面前的實際問題與數(shù)學工具之間聯(lián)系的一座必不可少的橋梁。
模型假設
根據(jù)對象的特征和建模目的,對問題進行必要的、合理的簡化,用的語言作出假設,是建模至關重要的一步。如果對問題的所有因素一概考慮,無疑是一種有勇氣但方法欠佳的行為,所以高超的建模者能充分發(fā)揮想象力、洞察力和判斷力,善于辨別主次,而且為了使處理方法簡單,應盡量使問題線性化、均勻化。
模型構成
根據(jù)所作的假設分析對象的因果關系,利用對象的內(nèi)在規(guī)律和適當?shù)臄?shù)學工具,構造各個量間的等式關系或其它數(shù)學結構。這時,我們便會進入一個廣闊的應用數(shù)學天地,這里在高數(shù)、概率老人的膝下,有許多可愛的孩子們,他們是圖論、排隊論、線性規(guī)劃、對策論等許多許多,真是泱泱大國,別有洞天。不過我們應當牢記,建立數(shù)學模型是為了讓更多的人明了并能加以應用,因此工具愈簡單愈有價值。