另外,不同溫度下SnO2與PbO的標準生成自由能不同,前者生成自由能低,更容易產(chǎn)生,這也在一定程度上解析了為什麼無鉛化以后氧化渣大量的增加.表一列出了氧化物的生成Gibbs自由能,可以看出SnO2比其他氧化物更易生成.通常靜態(tài)熔融焊錫的氧化膜為SnO2和SnO的混合物. 氧化物按分配定律可部分溶解于熔融的液態(tài)焊料,同時由于溶差關(guān)系使金屬氧化物向內(nèi)部擴散,內(nèi)部金屬含氧逐步增多而使焊料質(zhì)量變差,這在一定程度上可以解釋為何經(jīng)過高溫提煉(或稱還原)出來的合金金屬比較容易氧化,且氧化渣較多;氧化膜的組成,結(jié)構(gòu)不同,其膜的生常速度,生長方式和氧化物在熔融焊料中的分配系數(shù)將會有很大差異,而這又和焊料的組成密切相關(guān).此外,氧化還和溫度,氣相中氧的分壓,熔融焊料表面對氧的吸收和分解速度,表面原子和氧原子的化合能力,表面氧化膜的致密度,以及生成物的溶解,擴散能力等有關(guān).
定期檢測錫爐中錫的成分
嚴格控制錫中不純物含量;因為不純物含量的增加會影響到錫渣的產(chǎn)生量.
日本學(xué)者Tadashi Takemoto等人對SnAg3.5,SnAg3.0Cu0.5,Sn63Pb37焊料進行試驗,發(fā)現(xiàn)所有焊料的氧化渣重量都是通過線性增長的,三種焊料氧化渣的增長率幾乎相同,也就是其增長速率與焊料成分關(guān)系不大.氧化渣的形成與熔融焊料的流體流動有關(guān),流體的不穩(wěn)定性及瀑布效應(yīng),可能造成吸氧現(xiàn)象及熔融焊料的翻滾,使氧化渣的形成過程變得更加復(fù)雜.另外,從工藝角度講,影響氧化渣產(chǎn)生因素包括波峰高度,焊接溫度,焊接氣氛,波峰的擾度,合金的種類或純度,使用助焊劑的類型,通過波峰PCBA的數(shù)量及原始焊料的質(zhì)量等.
嚴格控制爐溫
對于Sn63-Pb37錫條而言,其正常使用溫度為240-250oC。使用方要經(jīng)常用溫度計測量爐內(nèi)溫度并評估爐溫的均勻性,即爐內(nèi)四個角落與爐中央的溫度是否一致,我們建議偏差應(yīng)該控制在±5 oC之內(nèi)。需要指出的是,不能單看波峰爐上儀表的顯示溫度,因為事實上儀表的顯示溫度與實際爐溫通常會存在偏差。這一偏差與設(shè)備制造商及設(shè)備使用時間均有關(guān)系。