銦回收面臨的主要挑戰(zhàn)包括銦在電子設備中的低濃度和與其他金屬的合金化。傳統(tǒng)的回收方法難以有效提取,需要采用濕法冶金或火法冶金等先進技術。同時,回收過程中需確保電子廢物流的分類和處理,以減少污染物對回收過程的影響。 銦回收具有重要的環(huán)保和經(jīng)濟效益。通過回收廢舊靶材中的銦,可以減少對新資源的開采,降低環(huán)境污染,實現(xiàn)資源的可持續(xù)利用。此外,回收銦還能穩(wěn)定市場供應,降低生產(chǎn)成本,促進相關產(chǎn)業(yè)的可持續(xù)發(fā)展。
區(qū)別對比 ?成分差異:銦靶材為純金屬銦制成,而ITO靶材則是銦錫氧化物的復合物。 ?用途不同:銦靶材主要用于需要高導電性和延展性的領域,如航空航天部件;ITO靶材則因其透明導電性廣泛應用于光電顯示領域。 ?性能特點:銦靶材更側重于導電性和機械強度,而ITO靶材則兼顧導電性和光學透明性。
溶劑萃取法(化學法) 以濕法冶金為基礎,通過P204萃取劑選擇性富集銦: 含銦物料經(jīng)硫酸浸出后,在pH=1.5-2.0條件下進行三級逆流萃取,銦萃取率可達98%。 該工藝對低品位原料(含銦0.02%)適用性強,但存在試劑消耗大(硫酸用量2-3噸/噸銦)、廢水處理成本高的問題。
氧化銦是一種寬禁帶半導體,具有良好的光學透明性,而氧化錫的引入則增強了材料的導電性。這種成分結構使得ITO材料在保證高透光率的同時也具有低電阻率,兼具光學和電學性能。ITO靶材的這一獨特特性使其成為透明導電膜的主流材料,尤其適用于要求高透明度的光電設備和顯示技術。