條形碼 / 二維碼讀票機(jī)
原理:選民通過填寫或掃描條形碼 / 二維碼選票,機(jī)器讀取編碼后解析投票信息。
特點:
數(shù)據(jù)精度高,可存儲更多信息(如選區(qū)、候選人編號)。
需提前印制帶編碼的選票,適合電子化程度較高的選舉。
特征提取與判斷:識別選民的選擇意圖
根據(jù)選票標(biāo)記類型(填涂、勾選、手寫符號等),算法采用不同的特征提取策略:
(1)填涂標(biāo)記識別(常見場景)
面積占比法:計算填涂框內(nèi)黑色像素占比,超過閾值(如 30%-50%)則判定為有效選擇。
例:選民使用 2B 鉛筆填涂候選人 A 的方框,掃描后該區(qū)域黑色像素占比達(dá) 45%,算法判定為有效投票。
邊緣檢測法:通過 Canny 或 Sobel 算子檢測填涂區(qū)域的邊緣輪廓,與標(biāo)準(zhǔn)填涂形狀(如矩形、圓形)比對,排除不規(guī)則標(biāo)記(如筆尖打滑形成的短線)。
濃度梯度分析:填涂越均勻的區(qū)域,灰度值分布越集中,算法可通過統(tǒng)計像素灰度方差來區(qū)分 “認(rèn)真填涂” 與 “輕微觸碰”。
(2)勾選或手寫符號識別
形態(tài)學(xué)分析:通過膨脹、腐蝕等形態(tài)學(xué)運算,將勾選符號(√)或手寫標(biāo)記(如 “○”)轉(zhuǎn)換為標(biāo)準(zhǔn)形狀,再與預(yù)設(shè)模板匹配。
方向特征提?。簩τ谛本€標(biāo)記(如 “/”),計算像素分布的梯度方向,判斷是否符合 “勾選” 的典型角度(如 45° 或 135°)。
(3)異常標(biāo)記檢測
多選判定:同一候選區(qū)域內(nèi)檢測到多個標(biāo)記(如同時填涂兩個候選人框),或單票標(biāo)記數(shù)超過規(guī)定(如總統(tǒng)選舉多選 1 人),則判定為無效票。
空白票識別:所有候選區(qū)域標(biāo)記面積均低于閾值,判定為未投票。
4. 結(jié)果驗證與輸出:確保計數(shù)準(zhǔn)確性
重復(fù)校驗:對關(guān)鍵標(biāo)記區(qū)域進(jìn)行多次掃描(如兩次獨立圖像采集),結(jié)果一致才確認(rèn)有效。
人工復(fù)核接口:對算法判定存疑的選票(如填涂面積接近閾值、標(biāo)記形狀模糊),生成圖像供選舉工作人員人工審核(如美國部分州要求對 “爭議票” 進(jìn)行人工查驗)。
數(shù)據(jù)輸出:將識別結(jié)果轉(zhuǎn)換為結(jié)構(gòu)化數(shù)據(jù)(如候選人 ID、得票數(shù)),同步至中央數(shù)據(jù)庫或打印紙質(zhì)統(tǒng)計表。
讀票機(jī)的準(zhǔn)確性與可靠性依賴 “技術(shù) + 制度 + 人工” 的三維防護(hù):硬件通過冗余與校準(zhǔn)確保物理信號采集穩(wěn)定,軟件借助算法校驗與防篡改設(shè)計提升邏輯判斷精度,制度流程則通過標(biāo)準(zhǔn)化操作與人工監(jiān)督彌補(bǔ)技術(shù)局限性。這種多層級保障體系在全球主要民主國家的選舉中已被驗證 —— 根據(jù)美國 EAC(選舉援助委員會)2022 年報告,符合認(rèn)證標(biāo)準(zhǔn)的光學(xué)掃描讀票機(jī)平均錯誤率<0.003%,遠(yuǎn)低于人工計票的 1.5% 錯誤率。未來,隨著量子加密技術(shù)與聯(lián)邦學(xué)習(xí)在選舉系統(tǒng)中的應(yīng)用,讀票機(jī)的可靠性還將進(jìn)一步提升,同時保持對選民操作習(xí)慣的包容性。
爭議票處理機(jī)制
可視化復(fù)核界面:讀票機(jī)軟件提供選票圖像放大、灰度值可視化工具(如用熱力圖顯示填涂濃度),工作人員可手動標(biāo)記 “有效”“無效” 或 “待確認(rèn)”(如加拿大聯(lián)邦選舉中,人工復(fù)核團(tuán)隊通過專用軟件處理爭議票)。
多輪仲裁流程:對人工復(fù)核仍存爭議的選票(如填涂面積剛好卡在閾值邊緣),由選區(qū)選舉委員會 3 名成員投票決定,需至少 2 票同意方可判定有效性。