機械計數讀票機(Mechanical)
原理:通過機械結構(如齒輪、杠桿)統計選票數量,常見于早期手動投票機。
特點:
無需電力,成本極低,但效率低、易出錯,已逐漸被淘汰。
圖像預處理:優(yōu)化原始掃描數據
灰度化處理:將彩色圖像轉換為灰度圖,突出標記與背景的亮度差異(如鉛筆填涂區(qū)域灰度值較低)。
二值化轉換:通過設定閾值(如灰度值低于 128 視為標記),將圖像轉化為黑白二值圖,簡化后續(xù)計算(例:填涂框內黑色像素占比≥30% 視為有效標記)。
噪聲過濾:利用中值濾波、高斯濾波等算法,消除紙張污漬、折疊陰影等干擾(如去除面積小于 10 像素的孤立黑點)。
幾何校正:通過檢測選票邊緣的定位標記(如 registration marks),校正因傳送歪斜導致的圖像旋轉或縮放,確保標記位置與預設模板對齊。
選票預處理:通過紅外光源掃描選票,生成灰度圖像,同時檢測選票邊緣的定位孔(registration holes)以校準位置。
區(qū)域劃分:根據選票模板,將圖像劃分為總統候選人區(qū)、參議員區(qū)、公投議題區(qū)等獨立 ROI。
填涂分析:對每個候選人對應的橢圓填涂框,計算黑色像素占比,超過 35% 則判定為有效投票。
異常標記處理:若同一總統候選人區(qū)檢測到 2 個及以上有效填涂,系統標記為 “多選票”(overvote),該區(qū)域投票無效。
數據同步:每臺讀票機實時將計數結果通過加密網絡傳輸至選區(qū)服務器,同時保存原始圖像供事后審計(如 2020 年佐治亞州重新計票時,人工核對了掃描圖像與紙質選票)。
讀票機的準確性與可靠性依賴 “技術 + 制度 + 人工” 的三維防護:硬件通過冗余與校準確保物理信號采集穩(wěn)定,軟件借助算法校驗與防篡改設計提升邏輯判斷精度,制度流程則通過標準化操作與人工監(jiān)督彌補技術局限性。這種多層級保障體系在全球主要民主國家的選舉中已被驗證 —— 根據美國 EAC(選舉援助委員會)2022 年報告,符合認證標準的光學掃描讀票機平均錯誤率<0.003%,遠低于人工計票的 1.5% 錯誤率。未來,隨著量子加密技術與聯邦學習在選舉系統中的應用,讀票機的可靠性還將進一步提升,同時保持對選民操作習慣的包容性。